Exceptional service in the national interest

Gaussian Process Models

Laura Swiler

IMA Introduction to Uncertainty Quantification Course

June 17, 2015

Overview

- Metamodels
- Gaussian Process background
- Gaussian Process formulation
- Examples
- Use of Gaussian Processes within other methods (e.g. optimization)

Metamodels

- Metamodels: also called surrogate, response surface model, or emulator.
- Typically constructed over a small number of simulation model runs ("code runs")
- The simulation is very costly to run, we can only afford a limited number of runs, often dozens to a few hundred
- The code runs provide the training data (e.g. sets of input parameters and corresponding response values)
- The metamodel is constructed to provide a fast, cheap function evaluation for the purposes of uncertainty quantification, sensitivity analysis, and optimization.
- Simpson, T. W., V. Toropov, V. Balabanov, and F.A.C. Viana. Design and analysis of computer experiments in multidisciplinary design optimization: A review of how far we have come or not. In Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference), Victoria, British Columbia, Canada, September 2008. AIAA Paper 2008-5802.

Metamodels

- Taylor series approximations
- Linear regression models
- Neural networks
- Moving least squares
- Radial Basis Functions
- Multivariate Adaptive Regression Splines (MARS)
- Gaussian process models
- Polynomial Chaos expansions
- Multi-fidelity models
- Reduced-order models

- Why are GPs popular emulators of computer models?
 - They allow modeling of fairly complicated functional forms
 - They do not just offer a prediction at a new point but an estimate of the uncertainty in that prediction

Classic references:

- Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis of computer experiments. Statistical Science, 4(4):409–435, 1989.
- Santner, T., B. Williams, and W. Notz. The Design and Analysis of Computer Experiments. New York, NY: Springer, 2003.
- Rasmussen, C.E. and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006. e-book:
 - http://www.gaussianprocess.org/gpml/chapters/

- A stochastic process is a collection of random variables $\{y(\mathbf{x}) \mid \mathbf{x} \in \mathbf{X}\}$ indexed by a set \mathbf{X} in \mathfrak{R}^d , where d is the number of inputs.
- A Gaussian process is a stochastic process for which any finite set of y-variables has a joint multivariate Gaussian distribution. That is, the joint probability distribution for every finite subset of variables $y(\mathbf{x}_1)$, ... $y(\mathbf{x}_k)$ is multi-variate normal.
- A GP is fully specified by its mean function $\mu(\mathbf{x}) = E[y(\mathbf{x})]$ and its covariance function $C(\mathbf{x}, \mathbf{x}')$.

What does this mean?

- Start with a set of runs of a computer code: at each sample \mathbf{x}_i we have output $y_i(\mathbf{x}_i)$.
- The output at a new input value, \mathbf{x}_{new} , is uncertain.
- This is what a GP will predict.
- Related to regression.
- Related to random functions. From our set of samples, we have a "deterministic" function that is a set of points $\{x, y(x)\}$ or $\{x, f(x)\}$. Instead of f(x), if we use the outcome of a random draw from some joint distribution of random variables $\{Z(x_1), \dots Z(x_n)\}$, we get a realization of a random function.
- This is a stochastic process (e.g. generate many draws and get many functions).

How do we simulate realizations of a random function?

- Start with $\{Z(\mathbf{x}_1), ... Z(\mathbf{x}_n)\}$ from a multivariate normal distribution with mean 0 and covariance matrix $\mathbf{C} = \text{Cov}[Z(\mathbf{x}_i), Z(\mathbf{x}_i)]$.
- To simulate a random draw:
 - Generate n standard normal(0,1) random variables, S.
 - Perform a Cholesky decomposition C= LL^t.
 - Define **Z** = **LS**.
 - Plot the points $\{\mathbf{x}_i, Z_i = Z(\mathbf{x}_i)\}$
 - Connect the dots

Example covariance function in 1-D Sandia National Laboratories

 $Cov[Z(x_i), Z(x_i)] = exp(-\theta | x_i - x_i |^2)$

- We have the capability to generate random functions
- We can add a mean function (typically a constant or a simple polynomial regression)
- We can multiply the covariance by a constant to scale the vertical axis.
- Now, we can vary θ to get a certain amount of "wiggle" in the random function (smaller θ leads to less wiggle).
- NOW: we want to constrain these random functions to be consistent with the data points we have
- We can either take a Bayesian approach or a maximum likelihood (MLE) approach to estimate the parameters governing the Gaussian process
- Start with a MLE approach

 Typical formulation: a Gaussian process is defined by its mean and covariance function. We assume:

$$E[y(x)] = f(x)^T \beta$$
 Mean $Cov[y(x), y(x')] = \sigma^2 r(x, x')$ Covariance $Y \sim N(f(X)^T \beta, \sigma^2 R)$ Multivariate Normal

A few notes:

- x is one set of inputs of dimension d. We have N samples, x_i , for i=1...N. Each $x_i = \{x_{i1}, x_{i2},, x_{id}\}$. X denotes the (d*N) set of all samples, and β is the d*1 vector of regression coefficients. It may just be a constant β .
- It is more typical to write the covariance as the product of a scaling factor σ^2 times the correlation r(x, x').
- The full N * N correlation matrix between all points is R
- Y is the (N*1) vector of response values.

NOW: what is the prediction for a new point?

$$E[y(\mathbf{x}^*)|\mathbf{Y}] = f(\mathbf{x}^*)^T \boldsymbol{\beta} + r(\mathbf{x}^*)^T \mathbf{R}^{-1} [\mathbf{Y} - \mathbf{F} \boldsymbol{\beta}]$$

$$Var[y(\mathbf{x}^*)|\mathbf{Y}] = \sigma^2 (1 - r(\mathbf{x}^*)^T \mathbf{R}^{-1} r(\mathbf{x}^*))$$

- The correlation matrix for the training points is R.
- $r(x^*)$ is the vector of correlations between the new point x^* and the existing N points. It is of size N*1.
- **F** is the set of basis functions for the original full data set **X**.
- These are the conditional predictions (conditional on the data).

What does this look like?

Note the reduction in variance as you have more data

What does this look like?

This plot shows mean and variance plus random realizations

National Laboratories

Properties of the GP approximation

The mean prediction interpolates the data.

$$E[y(\mathbf{x}^*)|\mathbf{Y}] = f(\mathbf{x}^*)^T \boldsymbol{\beta} + r(\mathbf{x}^*)^T \mathbf{R}^{-1} [\mathbf{Y} - \mathbf{F} \boldsymbol{\beta}]$$

- The mean prediction is a linear combination of basis functions
- The predicted variance increases the further away the new point is from existing points.

$$Var[y(\mathbf{x}^*)|\mathbf{Y}] = \sigma^2(1 - r(\mathbf{x}^*)^T \mathbf{R}^{-1} r(\mathbf{x}^*))$$

Correlation Function

- Want to capture the idea that nearby inputs have highly correlated outputs.
- The correlation in some dimensions may be more important than others...different "length-scales" in each dimension
- Common correlation functions include

Power-exponential (or squared exponential):

- Typically the exponent p_j is 2, which gives smooth realizations. If p_j is 1, you get much rougher realizations.
- Larger values of θ_i mean smaller correlation in the x_i direction.

$$R(x,x') = \exp\{-\sum_{j=1}^{d} \theta_{j} (x_{j} - x_{j}')^{p_{j}}\} = \prod_{j=1}^{d} \exp(-\theta_{j} (x_{j} - x_{j}')^{p_{j}})$$

Correlation Function

Matern

$$R(\mathbf{x}, \mathbf{x'}) = \prod_{j=1}^{d} \frac{2^{1-\nu}}{\Gamma(\nu)} (-\theta_j | x_j - x_j |^{\nu}) K_{\nu} (-\theta_j | x_j - x_j |^{\nu})$$

- Is equal to the exponential covariance function when $v = \frac{1}{2}$.
- Is equal to the squared exponential when $v \rightarrow \infty$
- Typically, $v = \frac{1}{2}$, 3/2, or 5/2, going a process that looks rough to a process that is fairly smooth.

Other covariances are possible: Cauchy, polynomial functions, etc.

Putting it all together

- Start with N runs of a computer code, with points $\{x_i, y_i\}$. Ideally, the N points will be a well-spaced design such as Latin Hypercube.
- Define the mean function for the Gaussian process.
 - Often, zero mean or constant mean is used.
- Define the covariance function for the Gaussian process.
 - Typically, the power-exponential function is used.
- Estimate the parameters governing the Gaussian process, including β , σ , and any parameters of the correlation function R such as θ_i .
 - Can use maximum likelihood or Bayesian methods
- Substitute the parameters in the prediction equations and obtain mean and variance estimates for new points x*

Parameter Estimation (MLE)

 The observed training values represent a realization of a multivariate normal distribution.

$$f(\mathbf{Y}) = (2\pi)^{-\frac{N}{2}} |\Sigma|^{-\frac{1}{2}} exp \left[-\frac{1}{2} (\mathbf{Y} - \mathbf{\mu})^T \Sigma^{-1} (\mathbf{Y} - \mathbf{\mu}) \right]$$

- The basic idea of MLE is to find the particular mean vector and covariance matrix that define the most likely multivariate normal distribution to result in the observed data.
- Take the Log Likelihood and maximize it:
- $\log(f(\mathbf{Y})) = -\frac{N}{2}\log(2\pi) \frac{1}{2}(\sigma^{2N}|\mathbf{R}|) \frac{1}{2\sigma^2}(\mathbf{Y} \mathbf{F}\boldsymbol{\beta})^T \mathbf{R}^{-1}(\mathbf{Y} \mathbf{F}\boldsymbol{\beta})$
- Drop the -1/2 term, and the first constant term and minimize the negative log-likelihood:
- $NLL = \text{Nlog}(\sigma^2) + \log(|R|) + \frac{1}{\sigma^2} (\mathbf{Y} \mathbf{F}\boldsymbol{\beta})^T \mathbf{R}^{-1} (\mathbf{Y} \mathbf{F}\boldsymbol{\beta})$

Parameter Estimation (MLE)

- Use global optimization methods to optimize the NLL
 OR
- Use gradient-based optimization to optimize the NLL. The derivations have been worked out with respect to β , σ , and correlation parameters of R.
- Conditional on fixed values of the correlation parameters, the optimal values for β and σ are given by the generalized least squares formulation:

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{F}^T \boldsymbol{R}^{-1} \boldsymbol{F})^{-1} (\boldsymbol{F}^T \boldsymbol{R}^{-1} \boldsymbol{Y})$$

$$\widehat{\sigma^2} = \frac{1}{N} (\boldsymbol{Y} - \boldsymbol{F} \boldsymbol{\beta})^T \boldsymbol{R}^{-1} (\boldsymbol{Y} - \boldsymbol{F} \boldsymbol{\beta})$$

- One can use an iterative method, and obtain optimal correlation parameters θ , then calculate **R** and substitute it into above expressions above for β and σ .
- This optimization has been studied fairly thoroughly. A good reference is: Jay Martin. "Computational Improvements to Estimating Kriging Metamodel Parameters." Journal of Mechanical Design. Aug. 2009, Vol. 131, p. 084501:1-7.

Bayesian parameter estimation

- Denote all of the parameters governing the GP as:
 - $\Theta = (\beta, \sigma, \theta_i)$.
- Bayesian approach to estimate posterior distribution on hyperparameters Θ :

$$\pi(\Theta \mid X, Y) \propto \pi(\Theta) L(X, Y \mid \Theta)$$

- Likelihood is the same as before with MLE
- Use Markov Chain Monte Carlo (MCMC) to solve it
- Requires thousands of evaluations of the likelihood function
- Large amount of work done in the statistical community about priors on these parameters, estimation of marginal likelihoods.
- Jeffreys-independent prior, reference priors, are often assumed
- Need to be careful that priors are not improper
- Reference: Paulo, Rui. Default priors for Gaussian processes. Ann. Statist. 33 (2005), no. 2, 556--582. doi:10.1214/009053604000001264.

Experimental Design

- The training set of $\{x_i\}$ points, i = 1...N is usually a space-filling design such as a Latin Hypercube design or a maxi-min LHS
- Want the points to be well spaced
- Don't want highly collinear points (close together)
- PROBLEM:
 - The prediction calculations require the inversion of the correlation matrix
 - Often the correlation matrix is ill-conditioned and may be numerically singular
 - Happens even with a few hundred points in 2-D
 - One can't invert R to use in the prediction calculation

Techniques to handle ill-conditioning Sandia Of the correlation matrix

- Remove points in a random or structured way ("Sparsification")
- Often, a small "jitter" or noise term σ_{ϵ} is added to the diagonal terms of the covariance matrix to make the matrix better conditioned.

$$C = \sigma^2 R \rightarrow C = \sigma^2 R + \sigma_e^2 I$$
,

- Adding a nugget term
 - Estimate the nugget as part of the measurement error
 - Fix the measurement error and add a nugget, may have to do this iteratively until the nugget is big enough to make R well-conditioned

Techniques to handle ill-conditioning Sandia Of the correlation matrix (cont'd)

- Linear algebra tricks
 - Don't take the inverse of R, take the Cholesky factorization
 - Pseudo-inverse
 - Discards small singular values
 - Pivoted Cholesky Factorization
 - discard additional copies of the information that is most duplicated
 - Decrease the maximum eigenvalue and increase the minimum eigenvalue
 - Gradient-enhanced kriging
- SAND Report 2013-7022. Efficient and Robust Gradient Enhanced Kriging Emulators, by Keith Dalbey.

Software and Resources

Resources

- Websites: www.gaussianprocess.org
- Managing Uncertainty in Computer Models (MUCM):
 - UK project headed by Prof. Tony O'Hagan, University of Sheffield
 - http://www.mucm.ac.uk/Pages/ReadingList.html

Books:

- Gaussian Processes for Machine Learning, Carl Edward Rasmussen and Chris Williams, MIT Press, 2006.
- Statistics for Spatial Data, Noel A. C. Cressie, Wiley, 1993.
- The Design and Analysis of Computer Experiments. Santner, T., B.
 Williams, and W. Notz. Springer, 2003.

Software and Resources

Software:

- R: tgp (Gramacy and Lee), gptk (Kalaitzis, Lawrence, et al.), GPfit MacDonald, Chipman, and Ranjan)
- Matlab: gpml (Rasmussen, Williams, Nickisch), GPmat (Sheffield Group)
- Python: scikit-learn. http://scikit-learn.org/stable/
- Python: GPy, gptools, pyGPs, etc.
- C++: https://github.com/mblum/libgp
- MIT Group: MUQ/GPEXP (Python)
- Dakota/Surfpack (C++)
- Lots of others....

Example Use Cases

Efficient Global Optimization

- Technique due to Jones, Schonlau, Welch
- Build global Gaussian process approximation to initial sample
- Balance global exploration (add points with high predicted variance) with local optimality (promising minima) via an "expected improvement function"

$$E[I(\mathbf{x})] \equiv E[\max(f_{\min} - Y, 0)]$$

$$E[I(\mathbf{x})] = (f_{\min} - \hat{y})\Phi\left(\frac{f_{\min} - \hat{y}}{s}\right) + s\phi\left(\frac{f_{\min} - \hat{y}}{s}\right)$$

- Iteratively add points that have maximized EI, we use a DIRECT global optimization algorithm to identify that point
- Derivative-free, very efficient for low-dim.

Efficient Global Reliability Analysis (EGRA)

- Reliability methods find "failure surface" or "limit state contour" between "safe" and "failure" regions, often defined as g(x)=0
- Integral of the probability density of the inputs over the failure region is the probability of failure

$$p_f = \int ... \int_{g(0<0} f_X(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n$$

- Local reliability methods have problems with the nonsmooth, multimodal, and highly nonlinear failure surfaces
- EGRA is a global reliability analysis that uses a variant of EGO
 - The expected improvement is now the expected feasibility: penalize points from being away from the g(x)=0 boundary
 - Balance explore and exploit in locating the limit state (EGRA)
 - Handles nonsmooth, multi-modal, highly nonlinear response functions

Efficient Global Reliability Analysis

Gaussian process model of reliability limit state with 10 samples 28 samples

Efficient Global Reliability Analysis

EGRA: Benchmark performance

Reliability	Function	First-Order p_f	Second-Order p_f	Sampling p_f
Method	Evaluations	(% Error)	(% Error)	(% Error, Avg. Error)
No Approximation	70	0.11797~(277.0%)	$0.02516 \ (-19.6\%)$	_
x -space AMV^2+	26	0.11797~(277.0%)	$0.02516 \ (-19.6\%)$	_
u-space AMV^2+	26	0.11777~(277.0%)	$0.02516 \ (-19.6\%)$	_
u-space TANA	131	0.11797~(277.0%)	$0.02516 \ (-19.6\%)$	_
LHS solution	10k	_	_	0.03117~(0.385%,~2.847%)
LHS solution	100k	_	_	0.03126~(0.085%,1.397%)
LHS solution	1M	_	_	0.03129 (truth , $0.339%)$
x-space EGRA	35.1	_	_	0.03134~(0.155%,0.433%)
u-space EGRA	35.2			0.03133~(0.136%,0.296%)

Accuracy similar to exhaustive sampling at cost similar to local reliability assessment

Bayesian Formulation

- Generate posterior distributions on model parameters, given
 - Experimental data
 - A prior distribution on model parameters
 - A presumed probabilistic relationship between experimental data and model output that can be defined by a likelihood function

Bayesian Calibration of Computer Models

Experimental data = Model output + error

$$d_i = M(\mathbf{\theta}, \mathbf{x}_i) + \varepsilon_i$$

• If we assume error terms are independent, zero mean Gaussian random variables with variance σ^2 , the likelihood is:

$$L(\mathbf{\theta}) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(d_i - M(\mathbf{\theta}, \mathbf{x}_i))^2}{2\sigma^2} \right]$$

- How do we obtain the posterior?
 - It is usually too difficult to calculate analytically
 - We use a technique called Markov Chain Monte Carlo (MCMC)
 - In MCMC, the idea is to generate a sampling density that is approximately equal to the posterior. We want the sampling density to be the stationary distribution of a Markov chain.

Bayesian Calibration: Approach

- Take initial set of samples from simulation
 - Use LHS or space-filling design
- Develop Gaussian process approximation of the simulation
- Put priors on the input parameters
- Perform Bayesian analysis using MCMC
- Generate and analyze posterior distributions
- NOTE: GP surrogate adds a layer of uncertainty. However, this is explicitly modeled in the revised likelihood:

$$L(\mathbf{\theta}) = 2\pi^{-n/2} \left| \Sigma \right|^{-1/2} \exp \left[-\frac{1}{2} (d_i - \mu_{GP})^T \Sigma^{-1} (d_i - \mu_{GP}) \right]$$
$$\Sigma = \sigma^2 I + \Sigma_{GP}$$

Total uncertainty = (observation + model uncertainty) + surrogate uncertainty

Acknowledgments

- Summer School on the Design and Analysis of Computer Experiments, Aug. 11-15, 2006. Part of a SAMSI Program, taught in part by Jerry Sacks and Will Welch.
- John McFarland (now at Southwest Research Institute)
 - Dissertation: UNCERTAINTY ANALYSIS FOR COMPUTER SIMULATIONS THROUGH VALIDATION AND CALIBRATION. Vanderbilt University, May 2008.
- Discussions with Tony O'Hagan (University of Sheffield) over the years.
- Many discussion with Sandians, including Brian Rutherford,
 Patty Hough, Brian Adams, Mike Eldred, and Keith Dalbey.
- Discussions with Brian Williams at Los Alamos.

THANK YOU! QUESTIONS?